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Abstract. This paper presents the Local Search with SubProblem Exact Resolution (LSSPER) method
based on large neighbourhood search for solving the resource-constrained project scheduling problem
(RCPSP). At each step of the method, a subpart of the current solution is fixed while the other part de-
fines a subproblem solved externally by a heuristic or an exact solution approach (using either constraint
programming techniques or mathematical programming techniques). Hence, the method can be seen as
a hybrid scheme. The key point of the method deals with the choice of the subproblem to be optimized.
In this paper, we investigate the application of the method to the RCPSP. Several strategies for generat-
ing the subproblem are proposed. In order to evaluate these strategies, and, also, to compare the whole
method with current state-of-the-art heuristics, extensive numerical experiments have been performed. The
proposed method appears to be very efficient.
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1. Introduction

The problem of searching a given neighbourhood of an NP-hard problem can be itself
defined as a combinatorial optimization problem. In this paper we consider the neigh-
bourhood of a solution to an n variables NP-hard problem P as the set of solutions to
a p variables subproblem obtained directly from P by fixing n − p variables to their
current value. With no restrictive assumption on p, finding the best neighbour is likely
to be itself an NP-hard problem and the number of neighbours is exponential in p.

When p is small enough, an exhaustive enumeration of the neighbours can be
performed but the so-defined neighbourhood is unlikely to contain interesting feasible
solutions. In this paper we consider larger values of p, presumably defining a (very)
large neighbourhood, and we search for the best neighbour with an implicit enumeration
technique or a heuristic.

Successful applications of large neighbourhood search (LNS) are available in the
literature for various problems. For the quadratic assignment problem (QAP), the MI-
MAUSA method designed by Mautor and Michelon (1997) builds at each iteration a re-
duced QAP and solves it by branch and bound. For the vehicle routing problem (VRP),
Shaw (1998), Gendreau, Pesant, and Rousseau (2002), and recently Bent and Henten-
ryck (2001), consider the removal of several customer visits and re-insert them by using
limited discrepancy search (LDS). The latter succeeds in improving best published so-
lutions of standard VRP instances with time windows. In (Taillard and Voss, 2002),
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Taillard and Voss propose a general algorithm (POPMUSIC) in which subproblems are
built from subparts of the solution. A survey of very large scale neighbourhood search
techniques can be found in (Ahuja et al., 2002).

In this paper, we consider the resource-constrained project scheduling problem
(RCPSP) in which a set of activities has to be scheduled, subject to precedence con-
straints and resource limitations with the objective to minimise the total project duration
or makespan. This problem has received special attention in the last decades because of
its relative generality and its numerous practical applications (see (Brucker et al., 1999;
Kolisch and Padman, 2001) for recent surveys). Furthermore it is particularly hard to at-
tack. Thus, the best exact methods proposed so far are unable to solve some benchmark
instances consisting of 60 activities and 4 resources.

The use of LNS for solving scheduling problems is not new. Indeed, the shift-
ing bottleneck heuristic, initially designed by Adams, Balas, and Zawack (1988), is
one of the most popular heuristics to solve the famous job-shop problem (JSP) and
some of its extensions including multiresource operations, multipurpose machines, setup
times and deadlines (see for instance (Balas et al., 1998; Schutten, 1998)). In the shift-
ing bottleneck heuristic, the neighbourhood is defined by deriving a one-machine sub-
problem from the current solution. The best neighbour is then found by solving this
problem exactly. For the classical JSP, other LNS heuristics using various subproblem
generation and resolution schemes have been proposed in (Applegate and Cook, 1991;
Baptiste, Le Pape, and Nuijten, 1995; Caseau and Laburthe, 1999). The latter approach
is the forget-and-extend heuristic of Caseau and Laburthe which has obtained excel-
lent results on hard job-shop instances. The neighbourhood is defined by keeping the
processing order of operations, either belonging to a variable set of resources (as for the
shuffling procedure of Applegate and Cook (1991)), or scheduled in a variable temporal
slice. Hence different neighbourhood types are considered for diversification purposes.
The corresponding subproblems are solved by LDS combined with the powerful con-
straint propagation “shaving” technique. Some LNS methods have also been proposed
recently for other scheduling problems such as the single machine total weighed tardi-
ness (Congram, Potts, and Van de Velde, 2002), parallel machines (Frangioni, Scutellà,
and Necciari, 2004) and unrelated machines (Sourd, 2001) problems.

Despite the success of LNS methods for (job-shop) scheduling, to the best of our
knowledge no heuristic of this type for the RCPSP has been proposed yet though it is
an extension of the JSP. To fill this gap, we propose in this paper a new LNS method
for the RCPSP. This method differs from the ones cited above by the way it explores the
neighbourhood. Indeed, we concentrate our efforts on the generation of the subproblem,
leaving its resolution to a commercial solver. The size of the subproblem self-adapts to
the time spent by the solver to provide the solution. These features give our method a
practical interest since it is designed with almost no assumption on the method used to
explore the neighbourhood.

In section 2, we briefly describe the principles of the used LNS method in a general
context. In section 3, we propose a solution approach for the RCPSP based on the LNS
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method. In section 4, we conclude by discussing the computational results obtained on
standard benchmark instances.

2. General description of the method

Let us consider the resolution of a general optimisation problem

P : min
X∈X

f (X), with X = (x1, . . . , xn).

Throughout the paper, a capital letter (e.g., X) denotes a vector of decision variables
whereas an overline capital letter (e.g., X) represents a vector of values of the corre-
sponding variables.

The proposed LNS metaheuristic is widely inspired by the MIMAUSA method of
Mautor and Michelon (1997, 2001). It aims at alternating intensification and diversifica-
tion phases (Glover and Laguna, 1997) in the search of solutions.

Intensification phases consist of exploring deeply a given subset of the feasible
region X by solving successive subproblems. Thus, at each iteration s, a subproblem �s

of size p is generated by fixing n −p variables to the value they have in current solution

X
s−1

to P . Solving �s generates a solution Y
s

whose extension to global problem P

provides the neighbour solution X
s

of X
s−1

.
Conversely, diversification aims at visiting a subset of the feasible region X which

has not been explored yet. It consists in applying a diversification operator to the current
solution.

The method, which returns final solution X∗, is detailed in figure 1.

Step 1 is assumed to compute (quickly) a feasible solution X
0

to P using any
problem-dependent heuristic. The other major points of the algorithm are developed in
the subsequent subsections:

• the subproblem generation and the auto-adjustment of its size are described in sec-
tion 2.1,

• subproblem resolution strategies are discussed in section 2.2,

• the generation of neighbours and additional diversification procedures are presented
in section 2.3.

2.1. A self-adapting subproblem construction

At each iteration s, a subproblem of varying size p

�s: min
Y∈Y

g(Y ), with Y = (y1, . . . , yp),

is constructed by using problem P and its current solution X
s−1

. Roughly, the construc-
tion method consists in selecting p � n variables xi1 , . . . , xip (renamed y1, . . . , yp) of
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Begin

1. Compute an initial solution X
0

to problem P

2. Set X
∗

:= X
0
, s := 1

3. Initialise p

4. Repeat

5. Generate a subproblem �s of size p using P and its current solution X
s−1

6. Solve �s within a maximum time limit H and store actual resolution time t s

7. If a solution Y
s

to �s is obtained then
8. Compute new solution X

s
by extending Y

s

9. Else

10. Set X
s

:= X
s−1

11. End If
12. If f (X

s
) < f (X

∗
) then

13. Set X
∗

:= X
s

14. End If
15. If the diversification condition is verified then
16. Modify X

s
by a diversification operator

17. End If
18. Adjust p by using statistics on t s, . . . , t s−q

19. s := s + 1
20. Until stop criterion is met
End

Figure 1. General algorithm of the proposed method.

P and in replacing in the constraints of P the n − p remaining variables xip+1 , . . . , xin

by their current values xip+1 , . . . , xin .
Any feasible solution Y of subproblem �s has to be such that Z verifying zi1 =

y1, . . . , zip = yp and zip+1 = xip+1 , . . . , zin = xin is a feasible solution of P . Let Y
∗

denote the optimal solution of �s and let Z
∗

denote the corresponding extension to P .
Objective function g is such that f (Z

∗
) � f (X).

A stronger alternative consists of considering additional constraints such that for
any feasible solution Y of subproblem �s , f (Z) � f (X). In such a case, any feasible

solution of subproblem �s can be obviously extended to obtain a neighbour X
s

of X
s−1

for problem P verifying f (X
s
) � f (X

s−1
).

The auto-adjustment of size p is related to statistics on q consecutive values of
t s , . . . , t s−q, q � 1, where t s denotes the time spent at iteration s to solve subproblem
�s . If t s tends to increase, then p is decreased, until a lower bound p is reached. If t s

tends to decrease, the size of the subproblem is increased, until p = n.
Once p is determined, the selection of the p variables results from a problem-

dependent analysis of the constraints of P with the objective to ensure that:
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• the neighbourhood defined by �s has a “reasonable” size, i.e. contains a large number
of solutions that can be explored by an implicit enumeration method or a heuristic,

• the neighbourhood defined by �s contains promising solutions,

• the feasible region X of P is sufficiently explored by solving consecutive subprob-
lems �q , q � 1 (diversification of the search): the p variables must be selected in a
non-uniform way.

2.2. Resolution of the subproblem and intensification of the search

Once defined, an attempt to solve the subproblem �s is performed within a maximal
allotted time H . We assume the resolution method to be any (external to our method)
exact or approximate solution approach for problem �s . If feasible (possibly optimal)
solution Y

s
to �s is found then the time t s � H spent to obtain it is stored. Otherwise,

t s is set to an arbitrary large value. A large time limit H corresponds to an intensification
of the search since more time is spent in the search of the best solution of �s , i.e. the
best neighbour, and is more likely coupled with the use of an exact method. Conversely,
setting H to a small value aims at finding (hopefully) quickly a feasible solution of �s .

2.3. Generation of the neighbour solution and additional diversification of the search

Once a solution Y
s

to problem �s has been obtained, solution X
s

has to be generated

by extending Y
s

to problem P . The simplest way consists in replacing in X
s−1

values
xi1 , . . . , xip by values y1, . . . , yp. In practice, some additional improvements can be
performed depending on the problem structure.

Although the varying size of the subproblem and its non-uniform generation
scheme bring some diversification to the search, additional diversification procedures
can be used to explore other solution subspaces. These can consist of increasing consid-
erably the subproblem size, accepting non improving neighbours, rebuilding new solu-
tions from scratch, etc.

3. Application to the resource-constrained project scheduling problem

In this section, we adapt the method presented in section 2 for the resource-constrained
project scheduling problem. A formulation of this problem is given in section 3.1. In sec-
tion 3.2, we give a brief overview of schedule generation schemes, heuristics and meta-
heuristics proposed in the literature for the RCPSP. Then, we detail the implementation
of the proposed method. The initial solution generation method is given in section 3.3.
The subproblem generation and resolution procedures are presented in sections 3.4 and
3.5, respectively. Finally, the neighbour generation and the additional diversification
procedures are described in section 3.6.
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3.1. Problem description

In the resource-constrained project scheduling problem, A = {1, . . . , n} denotes the set
of activities and R = {1, . . . , m} denotes the set of resources. Each resource k ∈ R

has a limited availability Rk. Each activity i ∈ A has a duration pi � 0 and a request
rik � 0 on each resource k ∈ R. The activities are organised in a project represented
by an activity-on-node graph (also called project network) G = {V,E}, where V =
A∪{0, n+1} is the set of nodes representing the activities and E is the set of directed arcs
representing the precedence constraints. A directed arc (i, j) ∈ E means that activity i

must be completed when activity j starts. 0 and n+ 1 are dummy activities representing
the start and the end of the schedule, respectively. Their processing times and requests
are all set to 0. Node 0 is connected to any activity without predecessor and node n + 1
is connected to any activity without successor. The variables of the problem being the
starting times S = (S1, . . . , Sn+1), the RCPSP can be formulated as follows:

(P ) min Sn+1 (1)

Sj � Si + pi ∀(i, j) ∈ E, (2)∑
i∈A(τ,S)

rik � Rk ∀k ∈ R,∀τ ∈ {0, . . . , UB} (3)

where S0 = 0 and A(τ, S) is the set of activities in process at time τ in solution S, i.e.
verifying Si � τ < Si + pi .

This problem is strongly NP-hard, as an extension of the job-shop problem. Fig-
ure 2 displays an example taken from (Klein and Scholl, 1999) with 10 non-dummy
activities and a single resource of 4 units. In part (a) of the figure, the project network is
displayed. Under each node, the duration and the request of the corresponding activity
are given, respectively. In part (b) of the figure, a feasible schedule of makespan 24 is
represented by way of an extended Gantt chart.

3.2. Schedule generation schemes, metaheuristics and neighbourhoods for the RCPSP

In this section we first give a short overview of the constructive heuristics designed for
the RCPSP. Then, we discuss the different neighbourhoods that have been used so far for
this problem. For a recent state-of-the-art review of heuristics for the RCPSP we refer to
(Hartmann and Kolisch, 2000).

The simplest heuristics are constructive. They build a feasible solution starting
from scratch. A constructive heuristic has generally n steps, where n denotes the num-
ber of activities. At each step, a single activity is selected for being scheduled among a
set of candidate activities. The way this set is generated and the scheduling process of
the selected activity are both determined by a schedule generation scheme (SGS). A pri-
ority rule generally determines which activity is selected for being scheduled among the
candidate ones.

Two SGS are commonly used in the literature: the parallel SGS and the serial
SGS. The serial SGS, used in the present study, puts in the set of candidate activities
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Figure 2. A RCPSP example (Klein and Scholl, 1999) and a feasible solution.

any activity not already scheduled that has either no predecessor or all its predecessors
already scheduled. The candidate activity selected with the priority rule is scheduled
at its earliest precedence-feasible and resource-feasible starting time, taking the already
scheduled activities into account. The set of all schedules that can be generated with
the serial SGS is called the set of active schedules and is dominant w.r.t. makespan
minimisation. We refer to (Kolisch and Hartmann, 1999) for a more precise description
of the serial and parallel SGS.

We roughly divide the heuristics proposed for the RCPSP in two categories. The
first category consists in the single and multi-pass priority-rule based methods. A single
pass priority rule-based method performs a single call to the serial or the parallel SGS
with a priority rule. Multi-pass priority-rule based methods perform several calls of a
given SGS. Each time, a different priority-rule is used, possibly by biasing the selection
through a random device. We refer to (Hartmann and Kolisch, 2000) and (Schirmer,
2000) for details on multi-pass random-biased priority-rule based methods. Another
variant of a multi-pass method is the iterative forward/backward scheduling method (Li
and Willis, 1992). We describe this method with more details in section 3.3 since we
have used it for both building an initial solution and improving the current solution.

The second category includes the metaheuristics and the neighbourhood search
methods. Most of these methods are based on the serial SGS or on a variant named
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the “list scheduling algorithm” (Kolisch and Hartmann, 1999; Hartmann and Kolisch,
2000). Thanks to the dominance property of the set of active schedules, there exists
an input priority vector (or an input list L∗ for the variant) of the serial SGS leading
to the optimal schedule. Most of the metaheuristics proposed for the RCPSP (some of
them being evaluated in (Hartmann and Kolisch, 2000)) take advantage of this prop-
erty and restrict the search to priority vectors or to feasible lists. This is for example
the case of simulated annealing approaches (Lee and Kim, 1996; Cho and Kim, 1997;
Bouleimen and Lecocq, 2003), genetic algorithms (Leon and Ramamoorthy, 1995;
Lee and Kim, 1996; Hartmann, 1998; Kohlmorgen, Schmeck, and Haase, 1999),
tabu search (Pinson, Prins, and Rullier, 1994; Baar, Brucker, and Knust, 1998; Valls,
Ballestin, and Quintanilla, 2000; Nonobe and Ibaraki, 1999; Thomas and Salhi, 1998),
best fit search (Naphade, Wu, and Storer, 1997), ant colony algorithm (Merkle, Midden-
dorf, and Schmeck, 2002). In these approaches, a move computes a neighbour activity
list or a neighbour priority vector. However, it has to be pointed out that for the activity
list as well as for the priority vector representation, the number of neighbour activity lists
(or priority vectors) does not necessary reflect the number of actual neighbour solutions
in terms of activity starting times. Indeed, it is well known that several different lists or
priority vectors can lead to the same solution.

Other neighbourhood search methods based on different schedule representations
have been proposed, like the shift vector representation (Sampson and Weiss, 1993),
the schedule scheme representation (Baar, Brucker, and Knust, 1998), the disjunctive
arc based representation (Bell and Han, 1991) and the activity-on-node/network flow
representation (Artigues, Michelon, and Reusser, 2003).

In contrast with these approaches, we focus in this paper on the direct representa-
tion of the schedule by the vector of starting times. Indeed, as it will be presented in the
next subsections, this allows to define the search for the best neighbour as a scheduling
subproblem. In this framework, an interesting approach has been used in (Mausser and
Lawrence, 1997), where the makespan of a given solution is improved by reschedul-
ing entirely at each step a block of activities. A block is composed by the activities
entirely scheduled in a given time slice, as in the Forget and Extend heuristic (Caseau
and Laburthe, 1999). The rescheduling of a given block potentially represents a large
neighbourhood. Hence, such a block structure is considered in the present study.

3.3. Generation of an initial solution

In this subsection, we describe how we generate an initial solution S
0

for our imple-

mentation of LNS for the RCPSP. S
0

is generated with a variant of the iterative for-
ward/backward heuristic (Li and Willis, 1992). This heuristic alternates forward and
backward passes of the serial SGS, computing each time a feasible schedule. The for-
ward pass computes a solution by applying the serial SGS to the RCPSP problem P ,
whereas the backward pass computes a solution by considering its “mirror” problem
MP obtained by reversing all arcs of the project network. In our variant, we ensure that
each generated schedule has a makespan non-greater than the previous one, thanks to
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the selected priority rules. This property together with the stop condition ensures a fast
convergence.

In the first forward pass, we generate a schedule with the serial SGS and the
MINLFT priority rule.1 Then we apply iteratively backward and forward passes un-
der the following scheme. Let FS (FF) be the start (finish) time vector computed by

the forward pass. We set S
0 := FS. The backward pass consists in applying the serial

SGS to MP, by taking as priority vector, FFn+1 − FF. Let BS (BF) be the start (fin-
ish) time vector computed by the backward pass. It can be easily shown that we can

set S
0 := BF − BF0 without increasing the makespan. Indeed, such a backward pass

amounts to applying a right shift to each activity in the solution FS, in the non increas-
ing order of the completion times FF, the right shift being bounded from above by the
current makespan.

If the makespan has not been decreased, the process stops. Otherwise, the next for-
ward pass consists in applying the serial SGS to P , by taking the new current start time

vector S
0

as priority vector. Again, the obtained start time vector FS verifies FSn+1 � S
0
.

The process iterates until two consecutive forward and backward passes obtain the same
makespan.

3.4. Generation of the subproblem

In contrast with most of the state-of-the-art methods, we do not use any special solu-
tion representation such as activity lists, priority vectors or disjunctive graphs. Hence
a solution is only represented in terms of a precedence- and resource-feasible start time
vector S.

At each iteration s � 1 of the method, the subproblem �s and, consequently, the
neighbourhood are defined by a set As ⊆ A of p activities As = {i1, . . . , ip} excluding
dummy activities 0 and n+1. Once these p activities have been selected, the subproblem
�s can be stated as follows. Each activity j ∈ A \ As being “frozen” at its current start

time value S
s−1
j , find a feasible schedule minimising the makespan of the remaining

activities.
In practice, freezing the start time of some activities is equivalent to generate a new

RCPSP applying the 3 following steps:

• We build a reduced project network Gs = (As, Es) including only the non-frozen
activities where Es = {(i, j) | i, j ∈ As, (i, j) ∈ E}.

• We modify the resource set R such that the availability Rkτ of each resource k ∈ R

at time period τ reflects the possibly frozen activities in process during τ :

Rkτ = Rk −
∑

j∈(A\As)∩A(τ,S
s−1

)

rjk.

• For each activity i ∈ As , we compute recursively a time window [ESi , LSi] by taking
the predecessor(s) and successor(s) of i as well as resource availability into account.
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First, we compute earliest and latest start times taking into account precedence con-
straints of both frozen and selected activities:

ESpred

i = max
{

max
j∈A\As,(j,i)∈E

S
s−1
j + pj , max

j∈As,(j,i)∈Es
ESj + pj

}
,

LSsucc
i = min

{
min

j∈A\As,(i,j)∈E
S

s−1
j − pi, min

j∈As,(i,j)∈Es
LSj − pi

}
.

As it can be seen in the computation of LSsucc
i , we also force any activity to be com-

pleted at the current makespan value S
s−1
n+1.

Second, we right (resp. left) shift the earliest (resp. latest) start time until the activity
can be processed without interruption w.r.t. resource availability:

ESi = min
{
t | t � ESpred

i ,∀k ∈ R,∀τ = t, . . . , t + pi − 1, Rkτ � rik

}
,

LSi = max
{
t | t � LSsucc

i ,∀k ∈ R,∀τ = t, . . . , t + pi − 1, Rkτ � rik

}
.

The variables of the subproblem built at iteration s being the starting times
(Ss

i1
, . . . , Ss

ip
), �s can be formulated as follows:

(�s) mini∈As {max Ss
i } (4)

Ss
i � ESi ∀i ∈ As, (5)

Ss
i � LSi ∀i ∈ As, (6)

Ss
j � Ss

i + pi ∀(i, j) ∈ Es, (7)
∑

i∈As∩A(τ,Ss)

rik � Rkτ ∀k ∈ R,∀τ ∈ {
0, . . . , S

s−1
n+1

}
. (8)

The subproblem �s can be defined as a RCPSP with time windows and varying
resource availability, which makes it in a sense more general than the original problem!
It is also easy to verify that any feasible solution of the subproblem can lead to a feasible

new solution S
s

of (P ) by setting S
s

i = S
s−1
i ∀i ∈ A \ As . However, S

s

n+1 may be
different from objective function value (4). We will see in section 3.6 how neighbour
solution S

s
is further improved.

In figure 3, the subproblem generation is applied on the current solution of the
illustrative example displayed in figure 2, assuming that p is set to 4 and that activities
As = {7, 8, 9, 10} have been selected. In part (a) of the figure, the selected activities
are displayed. Part (b) of the figure displays the computed time windows. Part (c) of
the figure shows the resource profile after removing the units required by the frozen
activities. Last, part (d) of the figure displays the project network of the subproblem.

We now explain how to determine the number p of activities constituting the sub-
problem �s and how the p activities are selected.

As mentioned in section 2.1, the computation of p self-adapts in function of the
time spent to solve the subproblem at the previous iterations. Let H denote the maximum
CPU time allotted to the subproblem resolution method. Let t s−1 be the time spent to
solve the subproblem at iteration s − 1. Let t = ∑

q=s−1,...,s−5 tq the total time spent
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Figure 3. Example of subproblem generation with p = 4.

on the subproblem resolution over the last 5 iterations. We have used the following
empirical rules. If t � H then we set p := p + 2. If H < t � 5H/2 then we set
p := p + 1. If 5H/2 < t � 4H then we set p := p − 1. If 4H < t � 5H then we set
p := p − 2. No decrease on p is made if a given lower bound p is reached.

To select the p activities, i.e. to build the set As , we have compared in our experi-
ments the 5 following possibilities (see section 4):

1. Critical&Random. The p activities are selected randomly but a higher probability is
assigned to critical activities. We decide that an activity is critical when it has been
scheduled at the same start times on the last two passes of the forward/backward
method.
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2. Random&Project Predecessors. The p activities are selected randomly but each time
an activity is selected, its immediate predecessor(s) in the project network is (are)
also selected.

3. Random&Contiguous Predecessors. The p activities are selected randomly but each

time an activity i is selected, any activity verifying S
s−1
j + pj = S

s−1
i is selected.

4. Random&All Predecessors. The p activities are selected by combining 2 and 3.

5. Block. A single activity i is randomly selected and included in As . Then, each activity

j contiguous to i or scheduled in parallel with i, (i.e. verifying S
s−1
i − pj � S

s−1
j �

Si + pi) is included in As in the limit of p activities. If this limit is not reached, we
iterate the process from the second, third, . . . , activity added to As . For diversification
purpose, the activities are considered for being included in As in a predefined random
order.

For selection methods 2–5, the objective is to generate subproblems having sufficient
independence with the rest of the solutions to make the represented neighbourhood large
enough. Selection scheme 5 can be seen as an adaptation of the methods proposed in
(Caseau and Laburthe, 1999; Mausser and Lawrence, 1997). The subproblem displayed
in figure 3 is obtained by selection scheme 5, p = 4 and a random selection of activity 7.

The only 3 activities verifying the condition S
s−1
7 −pj � S

s−1
j � S

s−1
7 + p7 are 8, 9 and

10. Hence any selection order would have lead to this subset of activities for p = 4.

3.5. Solving the subproblem

Our approach consists in evaluating the generality of the proposed method and its ap-
plicability in practical situations by leaving the subproblem resolution to a commercial
solver. In our experiments, we have used a constraint programming solver specialized in
scheduling and an integer linear programming solver. For the CP solver, constraints are
directly written since a library of scheduling constraints is available. For the ILP solver,
we use an extension of the well-known ILP formulation of Pritsker, Waters, and Wolfe
(1969) to time windows and time-varying resource availability. In the model of Pritsker,
Waters, and Wolfe, decision variables are the 0–1 variables xiτ = 1 if and only if activity
i starts at time τ . In particular, there is a resource constraint per resource and per periods
which makes easy the extension of the model to non-constant resource availability. In
both cases, no particular tuning is performed (see section 4). The solver is allotted H

time units and it returns the best solution found (if any) during this time limit.
In figure 4 we give in part (b) an example of solution S

s
obtained by a direct

extension of the solution returned by the solver (part (a)) for the subproblem of figure 3.
In this case, an improved (and optimal) solution of makespan 22 is obtained.

3.6. Neighbour generation and additional diversification

At iteration s, a feasible neighbour solution S
s

of S
s−1

is directly obtained by extending
the subproblem solution (see section 3.4).
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Figure 4. Resolution of the 4 activities subproblem of figure 3.

In the general case, such a direct extension may be easily improved. Indeed, all
frozen activities scheduled after the activities of the subproblem are likely to be possibly
left shifted, if the subproblem has been optimised positively. Hence, the direct exten-
sion serves as the first priority vector of the forward/backward approach presented in

section 3.3. We illustrate this process in figure 5. A solution S
s−1

of makespan 25 is
displayed in part (a) of the figure. The frozen activities are displayed in grey. Suppose
that solving the corresponding subproblem gives the suboptimal solution displayed in
part (b) and consider its direct extension for which we obtain a makespan of 25. How-
ever, the frozen activities can obviously be left shifted. We apply a first forward pass
of the serial SGS by setting the priority vector to the start times of the direct extension.
The schedule of makespan 24 displayed in part (c) is obtained. The backward pass is
applied (as explained in section 3.3) generating the schedule of makespan 22 displayed
in part (d). The next forward pass obtains the same makespan which ends the process
and gives the neighbour solution S

s
, which is here also optimal.

To perform additional diversification of the search, when the current solution has
not been improved during a number of iterations (arbitrarily set to n), a new solution
is generated by a call to the forward/backward heuristic with a random priority rule for
the first forward pass. This amounts to generating a new starting point for the proposed
method.
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Figure 5. Improvement of the direct extension with the forward/backward heuristic.

4. Computational experiments

We have implemented the proposed LNS heuristic LSSPER in C++. For the resolution of
the subproblem, generated by the Block strategy, we use the specialised ILOG SCHED-
ULER 5.0 constraint programming solver. We set empirically maximum resolution time
H to 0.5 s, the maximal total number of iterations to 10 · n and initial subproblem size
p to 15.

Experiments have been performed on a PC with 1 GB RAM and a 2.3 GHz proces-
sor. We have tested our method on the 110 “easy” Patterson instances (from 6 to 51
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Table 1
Best results of the proposed LNS Search.

Prob. av. (max) �UB av. �LB # best av. (max) CPU av. (max) # sched

PAT 0 (0) – 110/110 1.60 (59) –
ALV −0.46 (5.19) 46.24 45/48 232.23 (498) –
BL 0.11 (4.17) – 38/39 17.61 (66) –

KSD30 0 (0) – 480/480 10.26 (123) 830 (1120)
KSD60 0.22 (3.54) 10.81 413/480 38.78 (223) 1622 (2262)
KSD90 0.40 (5.65) 10.29 379/480 61.25 (309) 2441 (3488)

KSD120 1.51 (20.91) 32.41 241/600 207.93 (501) 3396 (5000)

activities) (Patterson, 1984) (PAT), the 39 highly cumulative Baptiste/Le Pape instances
with 20 activities (Baptiste and Le Pape, 2000) (BL), the 48 Alvarez instances with 103
activities (Alvarez-Valdés and Tamarit, 1989) (ALV) and the 2040 Kolisch et al. in-
stances with 30, 60, 90 and 120 activities (Kolisch, Sprecher, and Drexl, 1998) (KSD).

Our results are displayed in table 1. For each problem set, we display in the first two
columns the average/maximal deviation from the optimum or from the best known upper
bound and the average deviation from the critical path lower bound for the problems
whose optimal makespans are still unknown. The number of times we obtain the best
solution, the average/maximal CPU time required and the average/maximal number of
generated schedules are indicated in the next columns. This latter value corresponds to
the total number of schedules generated by our method for the resolution of an instance.
It sums the number of solutions found by the solver during the subproblem resolution
and the number of schedules computed by the forward/backward heuristic.

For all instances, except for KSD 120 set, the solutions found by LSSPER are on
average within 0.5% above the best known solutions. At the time of the experiments,
we have found new best solutions on the KSD and ALV sets. We still have 14, 9 and 4
best known solutions for the KSD 60, 90 and 120 sets,2 respectively. We have solved to
optimality all the Baptiste/Le Pape instances except one. However we need twice more
CPU time to solve these 20 activities instances than for the 30 activities KSD instances.
This seems to confirm the hardness of these highly cumulative instances (Baptiste and
Le Pape, 2000) whereas some (but not all!) KSD instances are very easy.

To further analyse our results we compare them with current best state-of-the-art
heuristics, all limited to 5000 generated schedules, on the KSD instances: the hybrid
genetic algorithm of Valls, Ballestin, and Quintanilla (2002), the self-adapting genetic
algorithm of Hartmann (1998), the tabu search method of Nonobe and Ibaraki (1999), the
simulated annealing of Bouleimen and Lecocq (2003) and the random biased sampling
method of Kolish (1996). Table 2 displays for each method the average deviation above
the optimum (KSD30) or CPM lower bound (KSD 60, 90, 120).

The results show that our approach is very competitive with the approaches en-
countered in the literature. The results on the KSD instances are better than the ones of
all the methods presented here. As for these approaches, the average number of gener-
ated schedules does not exceed 5000. However, this has to be tempered by the possibly
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Table 2
Comparison with state-of-the-art approaches.

Method av. �UB av. �LB av. �LB av. �LB
(KSD30) (KSD60) (KSD90) (KSD120)

LSSPER 0 10.81 10.29 32.41
Valls et al. (2002) 0.06 11.10 10.46 32.54
Hartmann (1998) 0.22 11.70 – 35.39
Nonobe, Ibaraki (1999) – – – 35.86
Bouleimen, Lecocq (2003) 0.23 11.90 – 37.68
Kolish (1996) 1.29 13.23 – 38.75

Table 3
Results of the LNS search with an ILP solver for the subproblem resolution.

Prob. av. (max) �UB av. �LB # best av. CPU

KSD30 0.08(3.17) – 457/480 165.04 (1485)
KSD60 0.63(7.07) 11.47 371/480 397.39 (2238)

huge number of partial solutions explored by the solver during the search for the optimal
subproblem solution. On the KSD instance j1201_1.sm, the number of fails encountered
during the search varies from 7 to 20000! This explains the rather large CPU times of
our method.

It can be noted that Valls, Ballestin, and Quintanilla (2002) obtain on the KSD 120
set better results (32.04% above CPM) within a smaller amount of time (4.01 seconds
on average) when they generate 10000 schedules. However we underline the simplicity,
the ease of implementation and the generality of our method.

To underline this generality, we replace the CP solver by the ILP CPLEX solver for
the subproblem resolution. The preprocessing made on the ILP is the same as for the CP
solver (see section 3.4). We set the branch and bound process to Depth First Search and
we select the parameter “emphasis on feasibility.” We set the maximum time allotted to
the solver to H := 5 s. The results we obtain on the KSD 30 and 60 sets are displayed in
table 3. The table shows that even if the latter parameter increases dramatically the CPU
times, the average deviation from the best solution is nearly the same as for our best
results displayed in table 2. This enlightens the practical interest of the approach and
seems to indicate that the choice of the subproblem generation method is more crucial
than the method used to solve it, w.r.t. the quality of the obtained solutions.

Next, we compare the different selection strategies for the subproblem construc-
tion. Table 4 reports the average deviation above the optimal makespan on the KSD
30 set obtained by each strategy using ILOG SCHEDULER as subproblem resolution
method. The results clearly show that the block strategy outperforms the other ones.

Since our method has several interacting components, we have to compare our
results with the ones obtained by each component used separately as a resolution method.
Namely, we compare our method with the 2 following heuristics:
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Table 4
Comparison of the selection strategies on the

KSD 30 set.

Method � opt.

Random&Critical 1.5338
Random&Project Predecessors 1.2370
Random&Contiguous Activities 1.0885
Random&All Predecessors 0.9524
Block 0.02

Table 5
Comparison with SCHEDALONE and FBALONE.

Method av. (max) �UB av. �LB av. (max) CPU
KSD30 KSD60 (KSD60) KSD30 KSD60

SCHEDALONE 0.17 (11.95) 1.68 (20.13) 13.03 12.77 (236) 65.73 (427)
FBALONE 0.32 (8.62) 1.10 (16.03) 12.12 123 (123) 223 (223)

LSSPER 0 (0) 0.22 (3.54) 10.81 10.26 (123) 38.78 (223)

• SCHEDALONE: The CP solver (ILOG SCHEDULER) is used to solve the global
problem as a truncated implicit enumeration method (using the same branching
scheme as for the subproblem resolution).

• FBALONE: The subproblem resolution phase is removed. The method amounts to a
multi-start heuristic where the forward/backward procedure is applied at each itera-
tion.

For a fair comparison, we stop SCHEDALONE and FBALONE when the maximal
time spent by the LNS method on the same set of instances is reached (for SCHED-
ALONE the maximal time spent sometimes exceeds this value due to the time necessary
to find next stopping solution). Table 5 gives the results of LSSPER, SCHEDALONE
and FBALONE on the KSD 30 and 60 instance sets.

The results show that the proposed LNS method performs better than both SCHED-
ALONE and FBALONE in terms of CPU times and quality of the solutions found. This
underlines that the good results obtained by LSSPER are due to the cooperation between
its components: exact resolution, local search and forward/backward heuristics.

We have also evaluated the impact of the characteristics of the instances on the
performance of our method on the KSD 60 instance set. In the KSD sets, instances are
characterised by the network complexity (NC), the resource factor (RF) (average num-
ber of resources required by the activities) and the resource strength (RS) (increasing in
function of the average number of available resource units). As already shown in many
other approaches, the hardest instances of these sets are the highly disjunctive ones (with
small RS). The impact of this parameter is shown in figure 6. We can clearly note that
the apparent difficulty of problems grows exponentially as RS decreases, while other
parameters (NC and RF) do not seem to have a similar impact, as shown in figures 7
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Figure 6. Deviation from CPM considering RS parameter (KSD 60).

Figure 7. Deviation from CPM considering NC parameter (KSD 60).

and 8. However, we can remark the relative bad behaviour of the method, compared to
best known solutions, on instances with RF = 0.25. This may indicate that the subprob-
lem selection method is less suitable in this particular case where only one resource is
required by an activity.

5. Conclusion

This paper presents LSSPER, a new competitive heuristic for solving the RCPSP, ex-
ploiting local search and exact resolution principles. At each iteration, the method con-
siders a varying size large neighbourhood, made up of the set of solutions to a given
subproblem, that is explored with the help of a truncated exact method. The solution



LSSPER 255

Figure 8. Deviation from CPM considering RF parameter (KSD 60).

provided by this partial optimisation is then re-injected into the current solution which
is also post-optimised. The subproblem non-uniform generation procedure, combined
with periodic re-start of the search, enables to introduce a diversification aspect in the
exploration of the search space and to hopefully avoid local optimum.

LSSPER takes place in a more general context where each constituting module
can be specified independently. Thus, this general method proposes an adaptable global
framework for solving various combinatorial optimisation problems.

Notes

1. The selected activity i has the smallest latest finish time LFi . LFj ’s are computed by backward recursion
in the project network (ignoring resources) after assigning LFn+1 to a given upper bound.

2. Results available at http://www.bwl.uni-kiel.de/Prod/psplib/library.html
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